
Digital Filters: Understanding the Mechanics

Martin Vicanek

11. January, 2023

1 Introduction

Filters are perhaps the most widespread devices in signal processing. Appli-
cations cover analysis, signal enhancement, noise reduction, and much more.
The goal of this article is to provide some basic insight to the inner work-
ings of digital filters, and in particular to show the relation between filter
coefficients and filter characteristics. To this end we will need some math,
however I’ll try to restrict it to the absolutely necessary.

2 A Simple Filter

A digital filter acts on a digital signal, which is given as a sequence of in-
coming samples. The filter will modify the stream of samples and send out
a resulting stream. Consider the first order recursive filter in figure 1.

It operates on the actual input sample in and the previous input and output
samples in1 and out1, respectively. These are multiplied by coefficients b0,
b1, and a1, respectively, to yield the current output sample out. Then the
actual samples in and out are assigned to the previous samples in1 and out1

for the next iteration.

Let’s have a look at how our filter modifies some common input signals. In
the graphs in figures 2-5, the light blue curve represents the input while the
filtered signal is shown in red.

In general, we see that the amplitude is reduced by the filter, and the shape
of the waveform gets distorted – except for the sine wave, where the original

1

Figure 1: Simple digital filter code

Figure 2: Triangle (light blue) and filtered triangle (red)

shape is retained (apart from attenuation and a delay or, more precisely, a
phase shift in the filtered signal). For this reason, sine waves are particularly
suited to test or characterize filters.

Fortunately, any incoming signal can be decomposed into a combination of
sine waves with different frequencies, amplitudes, and phases. Once we know
how the filter acts on each of these sine waves, we can recombine the results
to get the resulting filter output for any input signal.

Obviously, the filter behavior is determined by the coefficients b0, b1, and
a1, in the above first order filter example. Different choices will result in a
lowpass, highpass, low shelf, high shelf, or allpass filter. (Other types like
bandpass, notch or peaking filter would require a slightly more complex filter,

2

Figure 3: White noise (light blue) and filtered noise (red)

Figure 4: Sine (light blue) and filtered sine (red)

e.g. a biquad.) The relation between filter coefficients and filter character-
istics is not obvious even for this simple filter, therefore we will try to gain
insight in the following. Ultimately we want to be able to design a filter
according to a given specification.

3 Figuring out the Filter

Let us begin by writing down the filter recursion equation. We will use letters
x and y instead of words in and out for the input and output samples,
respectively. At the nth iteration step, the current input sample will be
denoted by xn while the previous sample will be denoted by xn−1. Likewise
for the output samples. Using this notation, the first code line of our filter
reads

yn = b0xn + b1xn−1 − a1yn−1 (1)

3

Figure 5: Square (light blue) and filtered square (red)

This equation can be solved by direct iteration: each new output value is
computed from the current and previous input and output values – but that’s
exactly what our filter code does! There is a better way, a trick that allows
us to solve for the entire output signal in one single step! Read on.

4 The Z-Transform . . .

The so-called Z-transform is given by multiplying each sample with the power
of some number z and taking the sum over all nonzero samples:

X(z) =
∑

xnz
−n (2)

A similar transform may be applied to the output samples yn. The expres-
sion on the right hand side of equation (2) yields different values for different
z, hence we obtain a function X(z). Applying the Z-transform to the filter
equation (1) is straight forward for the xn and yn terms; however, the other
terms involving the previous samples xn−1 and yn−1 require special consider-
ation. It can be shown that shifting the index towards the previous sample
amounts to multiplying by z−1 in the transformed domain. That’s why z−1

is sometimes called the unit delay operator.

Putting it all together, we get the following transformed filter equation

Y (z) = b0X(z) + b1z
−1X(z)− a1z

−1Y (z). (3)

Equation (3) is much simpler than the original equation (1) because it es-
tablishes a relation between the input X and the output Y for the same z.

4

Hence, with a modest amount of algebra, we can solve for Y to obtain the
following simple expression:

Y (z) = H(z)X(z). (4)

In equation (4), H(z) denotes the transfer function and is given by

H(z) =
b0 + b1z

−1

1 + a1z−1
. (5)

To summarize the result obtained so far: in the transformed domain, the
action of the filter is a simple multiplication of the input signal X(z) by the
transfer function H(z). The transfer function is a rational function of z.

In order to actually make use of this result, we need to elaborate a bit on
the meaning of the z parameter in the following.

5 . . . Demystified!

There is a close relation between the Z-transform in equation (2) and the
Fourier transform - so close that it is fair to call the Z-transform a disguised
Fourier transform! To see this, substitute for z the expression ejω, where
ω = 2πf/samplerate is the (dimensionless) angular frequency (in radians)
and j =

√
−1 is the imaginary unit (yes, we will use complex numbers here).

Then equation (2) becomes

X(ω) =
∑

xne
−jnω, (6)

where the right hand side is an ordinary Fourier series. Thus the left hand
side of equation (6), X(ω), is simply the frequency spectrum of the input
sequence xn. The same interpretation applies to all other functions of z.

With this insight we can think of equation (4) in terms of frequency, if we
substitute ejω for z. The frequency range from DC (ω = 0 or, equivalently,
z = 1) to the Nyquist limit (ω = π or z = −1) maps, on the z-plane, onto the
upper half of the unit circle. Formally we also include negative frequencies to
complete the unit circle. The situation is depicted in figure 6. In a nutshell,
the Z-transform is a disguised Fourier transform, and the z variable is an
encoded frequency variable.

5

Figure 6: Magnitude response of various high-shelf filters. Solid lines: present
work using equation (12). Dashed lines: analog prototype.

6 Designing Filters

We are now ready to design a filter. Our first example will be a DC blocker,
i.e. a high pass filter which will be transparent for audio frequencies and will
reject subsonic frequencies. Blocking DC means that the transfer function
H(z) is zero for z = 1. From equation (5) we see that this requirement implies
b1 = −b0, i.e. the two coefficients have equal magnitude but opposite sign.
At the other end of the spectrum, the filter is supposed to be transparent,
so H(z) = 1 for z = −1. Putting this into equation (5), we get

b0 = −b1 = (1− a1)/2.

The remaining coefficient a1 determines the cutoff frequency ωc which sepa-
rates the pass band from the stop band. You may derive the relation from
equation (5) by setting |H(ejωc)|2 = 1

2
; the result is

a1 =
− cos(ωc)

1 + sin(ωc)
. (7)

For a 20 Hz cutoff frequency and assuming a sample rate of 44100 Hz we
get ωc = 2π · 20/44100 = 0.00285, and from there the DC blocker filter

6

coefficients:

a1 = −0.99715, b0 = 0.99858, b1 = −0.99858.

As a second example, we will design a smoothing or low pass filter. We will
want unity gain for DC, H(z) = 1 for z = 1, and full rejection at Nyquist,
H(z) = 0 for z = −1. Putting this into equation (5) yields

b0 = b1 = (1 + a1)/2.

We choose a 740 Hz cutoff frequency and assume a 44100 Hz sample rate,
so ωc = 2π · 740/44100 = 0.1054. Using this value in equation (7) yields the
low pass filter coefficients:

a1 = −0.9, b0 = 0.05, b1 = 0.05.

If you scroll up, you’ll notice that these are the same coefficients as those
used in our code example.

So now you know how first order filters work. Wanna try biquads next? ;)

7

	Introduction
	A Simple Filter
	Figuring out the Filter
	The Z-Transform …
	…Demystified!
	Designing Filters

